
 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 1 of 10

Improving Deeply Embedded Control Software Development Processes
By: Scott Ranville
The Software Beret

Oct. 2002

1. Executive Summary
This article will tackle the question: “What does a company need to be doing in order to have a competitive
software development process for deeply embedded control applications?” The general ideas talked about
in this article apply to any model-based process, but the specific tools that are mentioned only apply to a
Matlab-based process. Also, my background is automotive, so this will be weighted towards automotive
powertrain applications.

A number of tools (automatic modeling style guide checker – MINT, on-target rapid Prototyping –
RapidHawk, automatic code generation – TargetLink, automatic unit test vector generation – Reactis) exist
today that can be introduced into the production software development process that will improve the quality
of the generated code, while lowering the overall costs and development time. There are a number of other
technology areas which would benefit from tools, but for which the tools do not exist today. Each company
needs to position itself so that when these tools become available, they are in a position to take advantage
of the tools. It is also beneficial for each company to work with the various tool vendors and research
groups to direct how the tools and research evolves such that the end product will be able to be used within
the your company’s production software development process. I have done this for a number of tools.
Before the tool vendors incorporated my recommendations, the tools did not solve the problems of the end
users and would not fit into their development processes. After working with me, the tools have gone from
the research groups in the companies to the production groups who are in the process of making them part
of the production software development process. Thus, without end user input, these new tools will not
meet the end user needs.

This article will describe the long-term process objectives, describe the author’s view of today’s process,
and finally describe the desired software development process.

2. Long-Term Objectives
When defining long-term process goals, it is necessary to define what the long-term objectives are and then
to figure out how to achieve this long-term vision. This section will define these long-term objectives.

The first key long-term objective is to automate wherever possible. In today’s process, there are a number
of manual steps each of which introduce time and are sources for errors. With the technology that is
available today, a number of these manual steps can be partially or fully automated. This automation will
result in shortening the overall development time while at the same time producing a higher quality end
product. The most promising automation opportunities today for a Matlab-based process include style
guide compliance checking and correcting, on-target rapid prototyping, automatic code generation, and
automatic unit test vector generation.

Unfortunately, today’s tools do not allow a single model to easily go through all the process steps with the
associated tools. One way to address this process flow concern is with a modeling style guide. The style
guide can be designed such that unsupported modeling constructs can be avoided. The style guide can also
require “aids” to be added to facilitate other automation scripts. These “aids” may be as simple as a
character string that is used within a field in a library block. A script that indicates to the tool that the block
needs special processing can then easily identify this character string. Checking the compliance to the
modeling style guide is a manual process that can be time consuming and error prone. An automated style
guide compliance checker can perform many of the needed checks in a matter of seconds instead of the
previous hours that a person may have taken. An additional automation step that can enhance the style
guide checker is a style guide fixer that will automatically fix “simple” style guide violations. Thus, the
style guide checker and style guide fixer will reduce the overall development time while allowing a model
to more seamlessly proceed through the software development process.

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 2 of 10

Rapid Prototyping is one of the process improvement initiatives that have been evolving over a number of
years. This provides feedback about the correctness and effectiveness of a control algorithm earlier in the
development process than if the control engineer had to wait for the software specification to go through
the rest of the software development process to get coded and then tested on the final application. Thus, the
benefit of Rapid Prototyping is early feedback on the control algorithm. Until recently, one limitation in
this feedback is that a high-end processor has been needed that is considered to have “infinite speed and
memory resources”. While this type of system does provide benefits, it does not answer the important
question of whether or not the algorithm will work on the production microprocessor that does have speed
and memory constraints. The on-target rapid prototyping takes advantage of the improving autocode tools
to generate C code that will fit on the production microprocessors. This code does not meet all the
production requirements, but does allow the controls engineer to get very close to a production level of
code in which to test the algorithm. The on-target Rapid Prototyping is a mechanism that allows for better
software requirements to be designed early in the development process, thereby reducing design errors,
shortening the development time, and reducing overall costs. As reported in “Removing Requirement
Defects and Automating Test” by Mark R. Blackburn, Robert Busser, and Aaron Nauman, “Boehm and
Basili … state that finding and fixing a problem late in the
development process can be 100 times more expensive than finding and
fixing the requirement or design phase.”

Another of the manual, and therefore, error prone steps is generating code from the software specification.
Recent advances in automatic code generation technology allows for software specifications, which are in
the form of models, to be automatically converted to efficient C code. Depending on the autocode tool, this
code can be as efficient as hand generated code, and in some cases even more efficient than the hand code.
Some of the autocode tools have also added enough flexibility to allow the autocode to satisfy company
specific coding standards, for example, many companies have special rules about which files variables are
declared in. These company specific requirements are needed to allow the autocode to be used with the
large base of legacy that the automotive companies will be using for a number of years to come. Automatic
code generation will shorten the software development time because it will take the tool a few seconds to
generate the code where as it takes a person a number of hours or even days. However, a bigger benefit will
be the reduced number of errors that are introduced by converting the software specification to code.
Lastly, another minor benefit will be that once the code generator is trusted, code inspections will not be
needed to check for compliance to coding standards and translation errors.

The introduction of models into the production software development process is a new process step. Many
of the models are being created by converting existing C code into a model (as opposed to creating the
model from scratch or from another “requirement” format). As with all manual steps, the converting of the
code to a model is an error prone step. In most cases the C code is trusted and the question arises as to
whether or not the model functionally matches the code. A new tool technology, automatic unit test vector
generation, will generate the input stimulus that can be applied to both the model and the code. If the model
and code outputs match for all time steps, then there is a certain degree of confidence that the model and
code functionally match. The degree of confidence depends on the type of test vectors that are generated.
Today’s tools generate test vectors primarily to test the control flow logic. Some common coverage
objectives are statement coverage, branch coverage, and MCDC coverage. The MCDC coverage level is an
FAA requirement and does provide a high degree of confidence that the control logic within the model and
the code functionally match. Because the unit test vector generation tools are so new, a good quality control
step at this time is to use model and code coverage tools to measure the model and code coverage levels
that are actually achieved. This will provide quantifiable measures that the model and code have been
tested to the same level. For example, if the coverage levels do not match, then closer inspection is needed
to see if the model has extra or missing components as compared to the code. Because automatic code
generation is not yet part of the production process, the automatic unit test vectors can also be used to
improve the confidence that the hand generated code functionally matches the model. Thus, the unit test
vector generation technology will help identify translation errors earlier, thereby providing for a higher
quality end product while reducing overall development time and costs. A reported in “Specification-Based
‘Safe Code’ Software Development Using BEACON” by Stephen Morton February 21, 2001 “The
Hughes Composite Software Error History reports that a bug caught in

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 3 of 10

unit testing costs as little as one tenth with respect to that same bug
if caught during post-release maintenance.”

The second long-term objective is to avoid all manual translations between different tools and different
process steps. As mentioned above, all manual steps involve time and are sources for error introduction. To
try to catch these errors and prevent them from progressing through the rest of the process, most groups add
“quality control” steps to the process. These quality control steps are often manual steps and involve “too
much” time. One way to address these manual translations is by selecting a “core” modeling tool which all
the other process steps must use. One of the more popular automotive “core” modeling tools today is
Matlab, but even this tool does not allow support for the entire software development process. A “core”
modeling tool will allow for a smoother flowing process with fewer translation errors and will reduce the
number of quality control steps that are needed. This will reduce the overall process development time and
result in a better end product.

The third long-term objective is to avoid all duplication of information. Multiple sources of information
take time to create and it becomes very hard to keep all the sources consistent. As an example, many
different process steps need to know the variable type. Instead of entering this information in each tool
separately, a central data repository should contain this information, and a ‘model preparation’ script
should extract this information from the central repository and convert into the format needed by the
particular tool. As a second example, a number of modeling constructs get reused in the models. Instead of
the engineer recreating this construct each time it is needed, there should be a library block that the
engineer can add to the model. As a last example, Matlab supports adding a label to a signal line, and also
supports the propagation character, “<”. This propagation character allows for the signal source to contain
the desired label. Then, the tool will automatically add the signal name to all subsequent signals that use the
propagation character. Thus, for overall efficiency improvements, consistency, and to reduce maintenance
time, there should only be one source for all information.

The fourth long-term objective is to have all relevant information formally documented. When trying to
automate the process, information that resides in the engineer’s mind cannot be automated. For example, if
the variable’s type is in the engineer’s mind, the “model preparation script” will not be able to
automatically convert this to the format needed by the tool. As another example, a second engineer that is
developing another feature that uses this variable will not be able to find the variable definition and may
implement it differently. Thus, the benefit of documenting all relevant information is that the tools can
access this for the desired automation. Also, if the engineer leaves the company or moves to another
position, their knowledge base is not lost. This will result in a more robust overall process and in a higher
quality of the end product.

The fifth long-term objective is to reduce the wall/chimneys that exist between different groups. The
groups need to work together to achieve an end product that is optimized instead of trying to optimize their
area of responsibility. In order to achieve the optimal solution, system level tradeoffs are needed. This
means that some groups will not have an optimal solution for their particular area of responsibility. As an
example, automatic code generation will allow for the hardware present and not-present calibration
parameters to be set before generating code. Then, during code generation, the autocode tool can only
generate the code that is really needed. This may mean that “build” engineer has to define the present and
not present hardware sooner in the software development process. The “build” engineer will also have to
take care to use the correct version of the code. Thus, the “build” engineer may complain that his job has
been made more difficult, but the reduction in ROM and RAM needs may lower the hardware costs and be
a net gain for the company. (For those not aware of this, hardware costs are a huge deal in the automotive
world. Using off-chip memory can cost a program millions of dollars over the life of the vehicle line.) If the
build engineer’s manager will authorize the development of another automation script, one can be
developed that will partially automate the build engineer’s job and end up making the job easier. Thus, by
eliminating these walls and working together, the final product will be of higher quality, lower overall cost,
and therefore improve customer satisfaction that should increase market share.

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 4 of 10

3. Today’s Process
In order to propose process improvements along with steps that are needed to get to this vision, it is
imperative to understand the existing process. This is required as most groups will not accept radical
changes to their day-to-day work, but require smaller incremental changes. Also, management needs to feel
confident that the changes will indeed benefit the overall process and still let them meet the production
delivery schedules. This is best done with gradual changes in which each step shows success before
implementing additional changes. Non-automotive groups would argue that this is an inefficient way to
implement process change, but a key factor for the automotive environment can be termed “software
factory”. Within automotive, there is a high degree of software reuse. A typical “new” application will take
a previous application and touch maybe 20% of the functions. Touching a function may be as small as a
one line code change. Thus, “clean sheet” projects are very rare. With this software factory there may be a
major application release every other day. As with most industries, the production engineers are
overworked, and do not have the time or luxury to get re-trained and take a big chunk of time to convert
their ‘feature’ to a new tool or format. Thus, incremental changes with immediate, quantifiable benefit are
needed to allow the production deadlines to be met and be acceptable to the working engineers and
management.

This section will establish what the current production software development process looks like to an
outsider. I use to be a Ford employee, but I was in research and was considered an outsider by the
production engineers.

The first step is to collect requirements on what the application is suppose to do. Within automotive, there
are a few sources of “requirements”. A predominant source is from the ‘calibrators’. These are the
engineers who do the in-vehicle testing and “fine tuning” of the vehicle performance. Often these
requirements are really bug fixes with some algorithm improvement suggestions. Some other, more
traditional, requirement sources are government regulations such as emissions and marketing requirements
for improved customer satisfaction. The requirements capture does receive extra attention when defining a
new application, but, for the most part, is on ongoing process which non-automotive industries may call
requirements creep.

The requirements definition is followed by “architecting” the requirements, which will establish major
divisions and the resulting interfaces. For example, will a single microprocessor be used, or a multi-
processor implementation. As with the requirements, prior architectures are often reused. This step may
find some requirement contradictions or missing or incomplete requirements. If found and fixed at this
stage in the process, this will result in the lowest cost and quickest solution. This architecting is typically
done by the same group that collects the requirements, with some additional technical specialists being
added to the team.

Once the requirements and architecture have been established, the individual ‘features’ (sometimes called
components, units, functions, sub-functions, rings, etc.) can be developed. These features need to follow a
modeling style guide so as to facilitate the model being used as seamlessly as possible throughout the rest
of the process. At this time, requirement and architecture clarification and refinement continue. Once
developed, the models need to be validated that they indeed meet the original requirements. A number of
validation techniques exist such as control theory analysis, simulation, rapid prototyping, and HIL. Ideally,
all requirement and interface issues will be resolved at the end of this step, because once these errors get
past this stage, the cost and time to find and fix them starts to go up significantly. Typically an individual
engineer or small group of engineers develops each feature. This same engineer is responsible for
validating the model.

After the model has been validated, or the development time expires, the model gets reviewed by a model
review board. This is a quality control step that is the last effort to prevent future costly requirement,
architecture, and algorithm errors. The board checks for compliance to the modeling style guide, checks for
compliance to the defined interfaces, and that the original requirements are indeed satisfied.

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 5 of 10

After the review board has “ok’d” the model, the model documentation can be created. This documentation
will then be used by the software coders as well as the calibrators for the final application testing and fine-
tuning.

Once the documentation is ready, the feature coders start writing the final production code. While not
always done, these coders have the option of testing the software on the PC and finding and fixing the first
wave of errors. Doing this will reduce the cost of finding and fixing the errors by a factor of 10. As the last
quality control step, the code gets inspected by a code review board. The code review board is checking for
compliance to coding standards, translation errors, and also that the original requirements have been met.

Ideally, the architecture team will decide on final hardware and define all the needed low-level driver and
RTOS/Scheduler features at the same time that they are defining the other interfaces. This will allow the
“low-lever driver” coders and the RTOS/Scheduler coders to develop the needed code in parallel with the
algorithm development, validation, and coding. In an optimized process, the low-level drivers will be
available very early in the process. This will allow the feature engineers to do on-target rapid prototyping in
their validation process. The RTOS/Scheduler is not needed quite as early the process, but could be used
for the validation efforts and also for the integration testing.

Once the code inspection has passed, the software is released to the ‘build’ engineer. The build engineer is
responsible for collecting compatible versions of all the features, low-level drivers, and RTOS/Scheduler
that when grouped together will meet all the requirements. The build engineer compiles the code and
releases the final application for in-vehicle and dyno testing.

After the application is released by the build engineer, the calibrators begin the final testing and “fine-
tuning” of the software. The testing is the last effort to catch coding errors and requirement errors before
the application is released to the end customer. The fine-tuning process sets the values of various
parameters in an attempt to optimize the vehicle performance. To optimize reuse, the feature development
includes a number of tunable parameters. Some of these include indications for hardware that is present or
not present. Other parameters directly affect the performance, for example, gain values in a PI control loop.

For all of the above, configuration management is needed to keep track of the various versions of each file
that are created. This allows for a controlled approach to changing the files and allows for previous
versions to be reused if needed.

4. Desired Process
This section describes a software development process that will place the in-vehicle software development
process among the leaders in the automotive industry. I am not going to claim that it is the best, yet, as I do
not know what all the other companies are doing. From what I do know*, many other companies are
considering these types of solutions and some companies have already successfully implemented some of
these proposals. Thus, to not take a serious look into these will put your company at a competitive
disadvantage.

*This knowledge of other companies comes from conference papers and from talking to the tool
vendors about requests that they have received for new features. Some of the tool vendors also
publish tool user lists and even testimonials and case study results.

The capture of requirements needs to become more formalized and move away from being dominated by
calibrator error reports. Today too many of the requirements involve “hand waving” and the requirement
that “that is the way we have always done it”. The requirements need to be written down and cataloged.
This will address the problem of how when individuals change to new jobs that core information is lost.
This will allow requirement tracebility and impact analysis to be conducted that will improve the final
product as original requirements will not be missed and when requirements become obsolete, they can be
safely removed. Also, when a change request comes in, more accurate estimates can be made for how long
it will take to fix it and all the locations that need to be fixed.

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 6 of 10

The new desired process will have tools to allow the architecture decisions to be documented and tested.
The architecture team will be able to analytically test and evaluate different options instead of having to
extrapolate and guess at the implications of their decisions based on prior experience. This analysis will
include such items as schedulabilty analysis, resource availability, and interfaces both within a single
processor and between multiple processors. For the schedulability part of this tool, some “sub-tools” are
ones that will generate ‘time’ test vectors that will force the path through the code that takes the longest
time. Another “sub-tool” is a timing accurate simulator that can be used to measure the worse case
execution time for the set of hardware settings that are being used.

A new element to the desired process is the need for a “central repository”. With the increasing time
pressures, need for higher quality solutions, and increasing complexity of the applications, duplicate
sources of information and missing information cannot be tolerated. The central repository will provide one
source of information that will get reused by in a number of the process steps. For example, a variable’s
type will be needed for typed simulations, on-target rapid prototyping, documentation, automatic code
generation, and unit test vector generation. Instead of manually duplicating this information in all the
different tools, a script can extract this information from the central repository and automatically convert it
to the format needed by each tool. A properly implemented central repository will make the process flow
smoother and result in a higher quality end product. As an example of what can happen if this is not done,
the $7 billion European rocket, Ariane 5, exploded during take off because of a type error that had made it
pass all their testing (total development time was a decade). Also, from an internet article, “NASA recently
lost Surveyor 98's polar lander due to a software error. A peer review team found that one software
development team used English units and the other used metric units in Earth-based mission software. The
software failed to convert between the units and was critical for successfully navigating the lander into
Mars' atmosphere, where it is assumed to have been lost.”

The creation of the models will be made easier by scripts and extended library blocks for commonly used
constructs. Not only will this speed the model creation time, but will also result in higher quality models as
there are fewer places for human error. These “helper” scripts will overlap with the auto-style guide
correction scripts. Both sets of scripts will reduce the number of mouse clicks that the engineer must do,
thereby saving time. Additionally, there will be an automatic style guide checker. This will relieve the
model review team of the time consuming and error prone step of doing this manually. Thus, this will result
in a more efficient overall process as the model review time will decrease and the subsequent steps will not
get delayed from a style guide violation that was missed.

The feature validation will largely remain the same as it is today, but there are some significant
improvements with rapid prototyping. The new on-target rapid prototyping and rapid prototyping for
distributed applications will allow for more up-front engineering to be conducted. This will result in higher
quality models that will reduce the number of errors found throughout the rest of the process. Thus, the
overall process will be more efficient and result in a higher quality end product. Additional improvements
will result as the modeling tool vendors add more features to the modeling tool such as execution times,
tolerances, and units. This will prevent the need to use additional tools and having to worry about
translation errors between tools.

One additional feature validation step that will also serve as a requirement validation step is the
introduction of formal methods. Formal methods can check for more global conditions that are easy to miss
with manual inspections. For example, one part of an algorithm restricts a variable’s value to a range of 1 to
10. This variable may be influenced by 9 other variables and 5 calibration settings. A physically remote
part of the model my have a condition that checks if the variable is > 12. This can never occur with the
current input ranges and calibration settings and is thus dead code. If there is no combination of input
ranges and calibration values that would allow the variable to be greater than 12, then this is an unnecessary
requirement. A number of other “built-in” checks such as this reachability check are possible. In addition,
formal methods tools allow the engineer to ask questions of the model. For example, can cruise control ever
be requesting an increase in engine torque at the same time that the ABS is requesting a decrease in engine
torque? This feature will allow the engineer to test problems that occurred in the past, were brought up
during an FMEA, or that seem like a potential problem. With the proper set of built-in checks and user

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 7 of 10

supplied questions, formal methods will guarantee that the investigated checks will never occur with the
given model, input ranges, and other input constraints that were supplied. While the tools to do this are still
in development, once formal methods analysis becomes available, the model will be free of “fundamental”
flaws and therefore of very high quality. Note, formal methods does not guarantee that the original
requirements were met, but only that the model itself is fundamentally sound. While demonstrating that the
asked questions satisfy all the stated requirements is a manual effort, formal methods could be used to
prove that the requirements have been satisfied assuming that the asked questions are sufficient.

Once the above new process has been fully implemented the model reviews will become significantly
easier. The model style guide checking tool will eliminate the need to check modeling style while the
formal methods will improve the confidence that the requirements are satisfied. The primary task of the
review board will be to check the set of questions that were asked of the model and verify that no
requirement was missed.

Model documentation is the same as today, but instead of a manual process to combine the model and other
documentation sources into the final format, a tool will do this automatically. Because this is pushbutton
easy, there should be no reason for the documentation to be output of date. A web based documentation
tool will allow geographically dispersed team members, for example the calibrator who is at the proving
grounds, the dyno test engineer who is in the basement, and the software coder who is on the other floor, to
have nearly instant access to the latest documentation. This will improve overall process efficiency as there
will be less confusion from out of date documentation and the time to wait for documentation to be
delivered.

With the ROM and RAM efficiency improvements in the automatically generated code and the increased
flexibility of the code generation tools, automatic code generation for a production process is feasible
today. There are still some needed automation scripts, such as concerting from the central repository to the
autocode tool format, but with these scripts the time consuming and error prone step of generating code can
be automated. This will prevent a number of translation bugs from proceeding to subsequent process steps,
while also reducing the time for code generation from hours or even days to a matter of seconds. Not only
will this be useful for the production code, but can be combined with the on-target rapid prototyping to
elevate this one more step from just close to production code to the production code. Autocode will also
remove the need for unit testing once the autocode tool is trusted. Lastly, autocode will remove the need for
code inspections, as the autocode tool will always be coding style guide compliant and the logic will have
been verified previously. Thus, after the initial cost and time of making the automatic code generation
pushbutton, autocode will reduce the code generation step, code inspection step, and subsequent testing
while improving the quality of the final product.

Low-level drivers and RTOS/Schedulers probably do not provide a competitive advantage, despite the
objections of the low-level driver and RTOS/Scheduler coders. If, for example, the in-house RTOS was
twice as efficient in ROM, RAM, and CPU usage than the nearest competitor, then that would be a
competitive advantage. However, there are commercially available RTOSs (for example see LiveDevices)
that are very efficient. Thus, the only competitive advantage would be over companies that do not take the
time to find the efficient commercially available RTOSs. Thus, outsourcing the low-level drivers and
RTOS/Scheduler code development will allow the engineers to concentrate on intellectual property
development which will differentiate the final product from the competition, thereby increasing market
share.

The new architecture tool described above will allow individually developed features to be automatically
combined into a larger model. This larger model will allow PC-based integration testing allowing earlier
detection of integration errors and therefore a lower overall cost to fixing them. If the requirements capture
and refinement and all the other steps are successfully implemented, there really should not be any
integration errors remaining. Once the process is mature enough and metrics are collected to demonstrate
that no integration errors are being detected, this process step can be removed.

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 8 of 10

With the new architecture tools and appropriate configuration with tracebility links, the build engineer
should have an easy time collecting compatible features. This collection should be automated. The build
engineer would be the logical person to enter the low-level drivers and the RTOS/Scheduler code from the
vendor into the architecture tool so that the build process from this point on is automated.

With all the improved process steps and tools, the in-vehicle/dyno testing should almost become unneeded.
The in-vehicle testing should be finding close to zero coding or requirement errors. When the above
process becomes mature, the in-vehicle/dyno testing will be primarily concerned with fine-tuning the
vehicle performance. A long-term goal is to be able to do all the calibration during the design phases, but it
is unlikely that this will be happening in the short to mid term.

With the use of autocode and the elimination of the unit testing, a code coverage tool will no longer be
needed. The model coverage tool is still a good metric tool to measure the degree of model coverage that
the testing has achieved. This will remove ambiguity especially while the process is maturing. With a
mature and trusted process, it may be possible to stop using the model coverage tool as well.

As in today’s process, configuration management will be needed. However, with the move from C-based
process to a model-based process, the previous file level of version control will not be sufficient. The new
models can be quite large, and the engineers (and the entire process) will benefit from a finer-grain control
of what gets version controlled. The use of libraries can be done today to address this issue, but this is not
necessarily the best solution. Alternative solutions are being investigated by companies like Emmeskey.

5. Summary of Impact Analysis for Desired Process

Process Step/Technology Cost & Effort
to Implement

Expected
Benefit

“Perfection”

Configuration Management Med Med
Requirements Capture High Low *
Requirements Tracebilty and Analysis High Low *
Architecture Design and Analysis High Med *
Schedulability Analysis (during design time) High Low *
Central Repository Med High
Feature Controller Algorithm Development Med Low
Discrete Controller Modeling Style Guide Low High
 - Automated Style Guide Checker Med Med
 - Automated Style Guide Fixer Med Med
Feature Validation
 - On-Target Rapid Prototyping Low High
 - Multi-Processor Rapid Prototyping Med Med
Formal Methods High Low *
Model Review Low High
Model Documentation Med High
Low-Level Drives (outsourced) Low Med
Feature Code Generation Med High
Automatic Unit Test Vectors Low High
Model and Code Coverage Low Med
RTOS/Scheduler Code Generation (outsourced) Low Med
PC-based Feature Code Testing (eliminated)
Code Review (eliminated)
PC-based Integration Testing High Med
Build the Application Med High
In-vehicle (or dyno) Testing Low High
Code Coverage (eliminated) & Model Coverage Low Med

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 9 of 10

For the “Perfection” category, this is relating to the commonly understood principle that the first 80% of
the work is the easiest and that the last 20% of the solution is the hardest. Those categories marked with ‘*’
are the ones that are trying to push the process towards perfection. While the ‘Expected Benefit’ of most of
these categories are listed as ‘low’, this is not to imply that the steps should be skipped. The ‘low’ benefit is
in the number of expected errors that are going to be found. However, the errors that are found will be
difficult to find errors that could have significant impacts including recall sort of errors. For the
requirements capture and tracebility steps, the ‘low’ benefits is because the near term benefit of these steps
is marginal, but the targeted benefit is more from long term usage of the model in which the original
requirements become obsolete.

6. Recommended Steps to do Today to start moving towards the desired process
AUTOMATE, AUTOMATE, AUTOMATE – Start the automation process now! Slowly get the engineers
use to using tools and start building the infrastructure and glue scripts to make this easy.

6.1. Establish Final Process Upfront
Ideally as much of the final process and tools to implement this final process will be established and
debugged ahead of time. Unfortunately, most companies do not have the resources to set aside a group to
do this, nor do they want to wait that long to start using good new technology that is available today. Thus,
in reality, bits and pieces of the new process will be implemented before other pieces. This will cause some
rework to be needed, but hopefully will help in both the short term as well as to help reach the final goal.

A “big picture” goal should be established and shared with both management and the engineers. The
engineers should not be inundated with the details, but at least be aware of the final goal which should
hopefully explain the changes that they are seeing.

The transition to this new process will most likely be painful and difficult, but is a necessary step. Once
properly planned and started, this transition should not be abandoned if it takes a little longer than expected
or if unforeseen difficulties arise. If no intermediate milestones are being met, then the migration plans
either have to be modified, or a completely new final process needs to be established.

6.2. Update the Software Development Process
The software development process has to allow for change in the process. A big obstacle in many
companies is that the engineers and the managers are unwilling to modify the process. A corporate culture
has to be established that allows process change and even encourages it (provided that the change is
demonstrated to be a good change, changing because one engineer or manager wants to without proof of
the benefit of the change is not good). One option to help with this is to establish a formal process-change
process. For example, start collecting metrics for today’s process that will serve as a baseline to compare
against future proposed changes. When a process or tool change is desired, a formal pilot project should be
conducted with metrics being collected and compared to the baseline metrics. If the new metrics indicate a
net corporate improvement, then the new process or tool can be added to the main line process. To
encourage change, one option is to solicit input from the working engineers to find out what their hardest
and most time consuming tasks are, and if they would recommend specific tool or process changes. If the
engineers are worried about repercussions from management or fellow engineers, an anonymous web page
could be used. As these individual items are collected, a summary of these could be placed on a web page
in which everyone could go and rate each one, thereby providing a section or division wide opinion instead
of just the opinion of one individual. Another option is to give an extra ‘+’ which counts towards their next
review to anyone that recommends a process or tool change that gets into the process and does indeed
improve the process.

What needs to be done today is to slowly introduce small changes to get managers and engineers use to
change. This should make them more receptive to the forthcoming “big” changes.

6.3. Enforce the Software Development Process
Once a process has been established, make sure that the entire division follows it without skipping steps;
exceptions should be extremely rare.

 Scott Ranville “The Software Beret” 1227 W. Weaver Cir.
work: 303-734-8988 Littleton, CO 80120
cell: 303-931-3070 State-of-the-Art Embedded Software www.softwareberet.com
fax: 801-457-9698 Tools and Processes scottranville@softwareberet.com

Page 10 of 10

Also, management has to allow the engineers the correct amount of time to do all the mandated steps.

6.4. Establish a Matlab Tool’s Group
This tools group that will create and maintain the “glue” automation scripts to make a high quality, easy to
use, robust software development environment. This group should service many other groups so as to
promote reuse of the automation scripts and thereby make it more cost effective. (During performance
review time, a ‘+’ could be given for sharing a script with another group, another ‘+’ for a large script that
is reused, another ‘+’ for sharing with a group that don’t naturally have a connection with, also a ‘+’ when
effectively using a script which came from another group.)

The tools group will be responsible for ok-ing the use of a new tool or a new version of a tool, and must
make sure that the new tool or tool version will work with all the automation scripts.

The goal is that these glue scripts should be minimized whenever possible and incorporated into the
vendor’s product whenever possible. Unfortunately no one tool vendor has demonstrated capability to do
every step in the process. Also, every company has their own data formats, preferred styles, etc., and it is
unlikely that the vendor will support all the company’s peculiarities, thereby mandating the need for some
automation glue scripts.

7. Conclusion
To fully implement a model-based embedded software development process does take time, effort and
money, but if done correctly, in the end the benefits are expected to be significant. According to
“Removing Requirement Defects and Automating Test” by Mark R. Blackburn, Robert Busser, and Aaron
Nauman “Organizations have demonstrated that the approach can be
integrated into existing processes to achieve significant cost and
schedule savings.”

Author Bio
Scott Ranville is an Embedded Software Tools Consultant and has been doing embedded software tool
research since 1995. He started at Ford Motor Company. Contact information:
scottranville@softwareberet.com, 303-734-8988.

